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Abstract. We present in this paper a numerical method for solving non-strictly-convex quadratic
semi-infinite programming including linear semi-infinite programming. The proposed method trans-
forms the problem into a series of strictly convex quadratic semi-infinite programming problems.
Several convergence results and a numerical experiment are given.
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1. Introduction

This paper is concerned with a numerical method for solving convex quadratic
semi-infinite programming problems with finitely many decision variables and
infinitely many affine inequality constraints. For existing numerical methods of
general semi-infinite programming, we refer the reader to a survey paper written
by Reemtsen and Görner in Reemtsen and Rückmann (1998) and to relatively
recent literatures such as Hettich and Kortanek (1993), Polak (1997), Shimizu
et al. (1997), Goberna and López (1998), and Reemtsen and Rückmann (1998).
Numerical methods of semi-infinite programming can be categorized into several
groups: discretization methods, cutting plane methods, local reduction methods,
nonsmooth optimization methods, exchange methods, interior point methods and
others. Some of these are applicable to convex quadratic semi-infinite program-
ming. An interior point approach was studied by Fang et al. (1994) for this class of
problem.
On the other hand, the authors previously developed in Ito et al. (2000) a com-

putational framework called dual parametrization for solving convex semi-infinite
programming problems (see also Liu et al., 1999, 2001a). In this framework, a
convex quadratic semi-infinite programming problem is reduced to the problem
of finding a global solution (together with the corresponding multipliers) of some
finite-dimensional nonlinear programming problem. A practical numerical method
for finding such a global solution was developed in Liu et al. (2001b) for strictly
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convex quadratic semi-infinite programming. We present in this paper an approx-
imation approach to the solution of non-strictly-convex quadratic semi-infinite pro-
gramming including the linear case. The proposed method transforms the prob-
lem into a series of strictly convex quadratic semi-infinite programming problems,
each of which is solved by a numerical technique develped in Liu et al. (2001b).
Convergence results and a numerical experiment are given.

2. Convex Quadratic Semi-Infinite Programming and Duality

Consider the following convex quadratic semi-infinite programming problem:

min
x

f �x� = 1
2
xTQx + bTx

subject to a�t�Tx � c�t� for t ∈ T ,
�P�

where x ∈ Rn is the decision variable; 0 � Q ∈ Rn×n, b ∈ Rn; a 
 T → Rn and
c 
 T → R are continuously differentiable functions defined on a compact subset
T of some Euclidean space. The order Q � 0 denotes that the matrix Q is positive
semidefinite, whileQ > 0 means thatQ is a positive definite matrix. The index set
T may be implicitly specified with a set of inequalities and/or equalities in some
applications.
The Dorn-type dual form of problem (P) is

max
x��

−1
2
xTQx −

∫
T
c�t� d�

subject to Qx + b +
∫
T
a�t� d� = 0�

� � 0�

�D�

where the dual variable� is sought over the space of all finite signed regular Borel
measures defined on the index set T , and the second constraint requires � to be
a nonnegative (i.e., not signed) regular Borel measure. It should be noted that the
variable x in problem (D) is only used to determine the feasible region and has
nothing to do with the maximization itself. In fact, the dual objective has a constant
value for each � within the feasible region.
We now assume that Slater’s constraint qualification holds for the primal prob-

lem (P), i.e., there exists an x ∈ Rn satisfying a�t�Tx < c�t� for all t ∈ T . Then
the strong duality holds, i.e., if there exists a solution to problem (P), then there
also exists a solution pair to problem (D), and there is no duality gap between the
primal and dual objectives at their solutions.
Due to the finite dimensionality of the primal variable x, we have the following

important property, which is a consequence of Carathéodory’s lemma.

PROPOSITION 1. Suppose that problem (P) has a solution. Then the set of solu-
tion pairs to problem (D) necessarily contains a pair with a finite measure suppor-
ted at no more than n points.
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Proof. See Theorem 12 of Ito et al. (2000). �

Our main concern is to find an optimal solution to the primal problem. When
the dual problem is solved yielding a dual solution pair �x∗� �∗�, this x∗ does
not necessarily solve the primal problem unless it is primal feasible and the pair
�x∗� �∗� satisfies the so-called complementarity condition.
We now have the following properties on the converse duality.

PROPOSITION 2. Let �x∗� �∗� be a solution pair of the dual problem (D).

(i) If Q > 0, then x∗ itself gives a solution to the primal problem (P).
(ii) Let �∗ be a multiplier corresponding to the equality constraint of prob-

lem (D). Then �∗ gives a solution to the primal problem (P).
Proof. (i) When Q > 0, the Lagrangian functional for problem (P) is strictly

convex with respect to x. Then it can be shown that the unique x∗ is primal feasible
and �x∗� �∗� satisfies the complementarity condition. See Theorems 13 and 14 of
Ito et al. (2000) for details. (ii) See Theorem 15 of Ito et al. (2000). �

3. Dual Parametrization

The first proposition in the last section suggests the search of a dual solution in a
subset of the measure space, where each of its element is characterized by the loca-
tion of a finite number of supporting points and the measures of these points. Let us
fix the number of supporting points to k, where k � n according to Proposition 1,
and denote these points by ti, i = 1, 2, � � � , k, and their measures by �i, i = 1, 2,
� � � , k, respectively. Then the dual problem (D) can be equivalently written as:

max
x�ti��i� i=1�2�����k

−1
2
xTQx −

k∑
i=1

�i c�ti�

subject to Qx + b +
k∑

i=1
�i a�ti� = 0�

ti ∈ T� �i � 0� i = 1� 2� � � � � k�

�D′�

which is a finite-dimensional nonlinear programming problem. Unfortunately, it is
not convex.
According to Proposition 1, the true number k∗ of supporting points of the op-

timal discrete measure for a given problem lies between 0 and n, but it is not known
a priori. We therefore need to make a guess of k when solving the parametrized
dual problem (D′). The most natural choice is k = n. However, a smaller k is better
from a computational perspective as far as k � k∗ because a larger k increases the
number of decision variables. When n > 1, the minimal number k∗ is usually
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less (often much less) than n. Hence it is, especially for large-scale problems,
advantageous to start with a small k and to increase it gradually while solving
problem (D′) for each k until some convergence criterion is satisfied.
It should be noted that we need to find a global solution of the parametrized

dual problem (D′), which can be highly nonlinear and multi-modal due to the
nonlinearity and nonconvexity of the functions c and a. A practical numerical
procedure for finding a global solution of problem (D′) was developed in Liu et
al. (2001b) for strictly convex quadratic semi-infinite programming. Based on the
fact that problem (D′) is nonlinear only with respect to ti’s, it proceeds as follows:
(1) first choose an integer k, fix k points �t1� t2� � � � � tk� and solve the quadratic
programming problem

max
x��i� i=1�2�����k

−1
2
xTQx −

k∑
i=1

�i c�ti�

subject to Qx + b +
k∑

i=1
�i a�ti� = 0�

�i � 0� i = 1� 2� � � � � k

and/or the corresponding primal form

min
x

1
2
xTQx + bTx

subject to a�ti�
T x � c�ti�� i = 1� 2� � � � � k

for the fixed k and ti’s; (2) then increase k and update ti’s, and repeat the process
for finding an approximate solution of problem (D′) until some stop criterion is
satisfied; and (3) finally move on to the nonlinear search for an accurate global
solution starting from the approximate solution.
This procedure is only applicable to the strictly convex quadratic case since it is

based on property (i) of Proposition 2. A similar procedure based on property (ii)
can be constructed for the general convex quadratic case. However, we need to
solve the parametrized dual (D′) instead of (D), and it is not a numerically stable
task to find an optimal multiplier for the equality constraint. We therefore consider
in the next section another approach for the numerical solution of non-strictly
convex quadratic semi-infinite programming including the linear case.

4. �-Approximation for the Non-Strictly Convex Case

For a given � > 0, let us approximate problem (P) by

min
x

f��x� = 1
2
xTQ�x + bTx

subject to a�t�Tx � c�t� for t ∈ T ,
�P��
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where Q� = Q + �I (I is the identity matrix).

PROPOSITION 3. Suppose that problem (P) has a solution. Then, for any � > 0,
problem (P�) has a unique solution x∗

� such that

x∗
� → x∗ as � → 0�

where x∗ is a unique minimum-norm solution of problem (P), i.e.,

	x∗	 = min � 	x	 
 x solves problem (P) ��
Proof. Since problem (P) has a solution, the feasible region of problem (P) is a

nonempty closed convex set. It is then clear that problem (P�) has a unique solution,
denoted above by x∗

�, since Q� > 0. Let S�P� be the solution set of problem (P).
Since S�P� is a nonempty closed convex set in Rn, there exists a unique point x∗ ∈
S�P� such that

	x∗	 = min
x∈S�P�

	x	�

We now prove that x∗
� converges to x∗ as � → 0. Note that, for any � > 0,

1
2
�	x∗

�	2 = f��x
∗
�� − f �x∗

��

� f��x
∗� − f �x∗�

= 1

2
�	x∗	2�

i.e.,

	x∗
�	 � 	x∗	� (1)

Hence, � x∗
� 
 � > 0 � is bounded by 	x∗	. Let ��k� be any sequence such that

�k > 0, k = 1, 2, � � � , and

�k → 0 �k → ��� (2)

Let �x∗
�ki

� be any convergent subsequence of �x∗
�k

� such that

x∗
�ki

→ x̄ �i → ��
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for some x̄ ∈ Rn. It is clear that x̄ is feasible and

f �x∗� � f �x̄�

= lim
i→�

f �x∗
�ki

�

= lim
i→�

(
f �x∗

�ki
� + �ki

2
	x∗

�ki
	2
)

= lim
i→�

f�ki
�x∗

�ki
�

� lim
i→�

f�ki
�x∗�

= lim
i→�

(
f �x∗� + �ki

2
	x∗	2

)

= f �x∗��

Thus, x̄ is a solution of problem (P). From the definition of x∗, we have

	x∗	 � 	x̄	�
and inequality (1) means

	x̄	 = lim
i→�

	x∗
�ki
	 � 	x∗	�

Thus 	x̄	 = 	x∗	, and hence x̄ = x∗ by the uniqueness of the minimum-norm
point in S�P�. Therefore, we have

lim
i→�

x∗
�ki

= x∗�

Since any convergent subsequence of the bounded sequence �x∗
�k

� converges to x∗,
we see that

lim
k→�

x∗
�k
= x∗�

which further implies

x∗
� → x∗ �� → 0�

since ��k� is an arbitrary sequence satisfying (2). �

This proposition can be slightly extended. Let x0 be any given point in Rn.
Consider the quadratic function

f��x0
�x� = 1

2
xTQ�x + bT

��x0
x�

where b��x0
= b − �x0. Note that f��x0

is obtained by taking away the constant
�1/2��	x0	2 from the quadratic function

1
2
xTQx + bTx + 1

2
�	x − x0	2�
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Defining the strictly convex problem

min
x

f��x0
�x�

subject to a�t�Tx � c�t� for t ∈ T ,
�P��x0

�

we have the following proposition.

PROPOSITION 4. Suppose that problem (P) has a solution. Then, for any � > 0,
problem (P��x0

) has a unique solution x∗
��x0

such that

x∗
��x0

→ x∗
x0

as � → 0�

where x∗
x0
is a solution of problem (P) that is closest to x0, i.e.,

	x∗
x0
− x0	 = min � 	x − x0	 
 x solves problem (P) ��

Proof. The proof is similar to that of Proposition 3 and is omitted. �

5. Algorithm and the Solution Sequence

Our algorithm for solving problem (P) is then described as follows.
Algorithm:

(1
) Start with some positive �.
(2
) Find a unique minimizer x∗

� of problem (P�) by solving its parametrized dual:

max
x�ti��i� i=1�2�����k

−1
2
xTQ�x −

k∑
i=1

�i c�ti�

subject to Q�x + b +
k∑

i=1
�i a�ti� = 0�

ti ∈ T� �i � 0� i = 1� 2� � � � � k

�D′
��

as was explained in Section 3.
(3
) Decrease � and continue until some convergence is observed.

Let x∗ be as in Proposition 3. We have the following properties for the solution
sequence �x∗

�� of problem (P�).

PROPOSITION 5. 	x∗
�	 � 	x∗	 for any � > 0, and if 	x∗

�	 = 	x∗	 for some �,
then x∗

� gives a solution to problem (P).
Proof. We have

f �x∗� � f �x∗
��



202 S. ITO ET AL.

and

f �x∗
�� +

1
2
�	x∗

�	2 � f �x∗� + 1
2
�	x∗	2�

The latter follows from f��x
∗
�� � f��x

∗�. Adding these inequalities yields 	x∗
�	 �

	x∗	. If 	x∗
�	 = 	x∗	 for some �, the second inequality gives f �x∗

�� � f �x∗�.
Together with the first inequality, we obtain f �x∗

�� = f �x∗�. �

PROPOSITION 6. 	x∗
�	 is nondecreasing and f �x∗

�� is nonincreasing as � tends
to zero.

Proof. Let �1 > �2 > 0. It follows from f�1
�x∗

�1
� � f�1

�x∗
�2

� and f�2
�x∗

�2
� �

f�2
�x∗

�1
� that

f �x∗
�1

� + 1
2
�1	x∗

�1
	2 � f �x∗

�2
� + 1

2
�1	x∗

�2
	2 (3)

and

f �x∗
�2

� + 1
2
�2	x∗

�2
	2 � f �x∗

�1
� + 1

2
�2	x∗

�1
	2� (4)

Adding these inequalities leads to 	x∗
�1
	 � 	x∗

�2
	. Similarly, by adding the inequal-

ities multiplied, respectively, by �2 and �1, we obtain f �x∗
�2

� � f �x∗
�1

�. �

PROPOSITION 7. Let �1 > �2 > 0. If one of the following three conditions is
satisfied, then the other two always hold:

f �x∗
�1

� = f �x∗
�2

�� 	x∗
�1
	 = 	x∗

�2
	� x∗

�1
= x∗

�2
� (5)

Proof. When either one of the first two conditions holds, the other follows
from inequalities (3) and (4). Then we obtain f�1

�x∗
�1

� = f�1
�x∗

�2
� (respectively,

f�2
�x∗

�1
� = f�2

�x∗
�2

�), which leads to x∗
�1
= x∗

�2
since f�1

(respectively, f�2
) is strictly

convex. �

A point x∗
� = lim�→� x∗

� always exists as a minimum-norm feasible solution.
We have

f��x� = 1
2
�x + Q−1

� b�TQ��x + Q−1
� b� − 1

2
bTQ−1

� b

= 1
2
	x + Q−1

� b	2Q�
− 1
2
bTQ−1

� b�

where 	 · 	Q�
denotes a norm induced by the positive definite matrix Q�, i.e.,

	x	Q�

= √

xTQ�x. Hence, for each � > 0, x∗
� is the unique feasible solution that

is closest to −Q−1
� b in this variable metric. When � varies from infinity to zero,

the reference point−Q−1
� b forms a continuous trajectory starting at the origin. The

reference path converges to a minimum-norm (in the ordinary sense of Euclidean
norm) solution of Qx = b, if it has a solution, or diverges otherwise. Especially,
when Q = 0, the divergent path is a half straight line passing through −b.
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Figure 1. Numerical results.
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Figure 2. Enlarged graphs of 	x∗
�	 and f �x∗

��.

6. Numerical Experiment

As an example of linear semi-infinite programming, let us consider the following
one-sided L1 approximation problem:

min
x

f �x� =
n∑

i=1

xi

i

subject to
n∑

i=1
xit

i−1
� tan t for t ∈ �0� 1 ,

where the tangent curve is approximated by a polynomial of degree n − 1 over the
interval �0� 1 . This problem can be written in the form of problem (P), where the



NON-STRICTLY CONVEX QUADRATIC SEMI-INFINITE PROGRAMMING 205

Table 1. Numerical results

� 	x∗
�	 f �x∗

�� f��x
∗
��

10.000000000000 0.627498223 0.728939324 2.697719656
5.000000000000 0.629180895 0.721860265 1.711527001
2.500000000000 0.634964254 0.709557769 1.213533122
1.250000000000 0.653799651 0.689110836 0.956269651
0.625000000000 0.700552542 0.661147117 0.814524242
0.312500000000 0.757616679 0.642883258 0.732568284
0.156250000000 0.848911930 0.627022976 0.683323878
0.078125000000 0.924611110 0.618603162 0.651997859
0.039062500000 0.953270521 0.617068387 0.634816886
0.019531250000 0.974319074 0.616487221 0.625757715
0.009765625000 0.993851686 0.616220132 0.621043089
0.004882812500 1.034042613 0.615950261 0.618560721
0.002441406250 1.079203447 0.615759463 0.617181191
0.001220703125 1.092331543 0.615734964 0.616463228
0.000610351563 1.111971134 0.615716404 0.616093748
0.000305175781 1.139406093 0.615703115 0.615901212
0.000152587891 1.172807405 0.615694838 0.615799779
0.000076293945 1.209500763 0.615690158 0.615745963
0.000038146973 1.267613667 0.615686359 0.615717007
0.000019073486 1.419053066 0.615681139 0.615700343
0.000009536743 1.873408608 0.615671616 0.615688351
0.000004768372 2.606464089 0.615659996 0.615676194
0.000002384186 3.003717616 0.615656153 0.615666908
0.000001192093 3.341549958 0.615654267 0.615660922
0.000000596046 3.585659260 0.615653527 0.615657358
0.000000298023 3.706558410 0.615653330 0.615655377
0.000000149012 3.811485453 0.615653240 0.615654323
0.000000074506 3.858058741 0.615653224 0.615653779
0.000000037253 3.878171687 0.615653221 0.615653501
0.000000018626 3.878171687 0.615653221 0.615653361
0.000000009313 3.878171687 0.615653221 0.615653291
0.000000004657 3.878171687 0.615653221 0.615653256
0.000000002328 3.878171687 0.615653221 0.615653238
0.000000001164 3.878171687 0.615653221 0.615653229
0.000000000582 3.878171687 0.615653221 0.615653225
0.000000000291 3.878171687 0.615653221 0.615653223
0.000000000146 3.878171687 0.615653221 0.615653222
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coefficients are given by

Q = 0� b =




1
1/2
���
1/n


 � a�t� = −




1
t
���

tn−1


 � c�t� = − tan t�

We applied our algorithm described in the previous section to this example for
n = 8. The experiment was done in the Matlab environment with the Optimization
Toolbox. We started the iteration with � = 10 and continued until it reaches to the
order of 10−10. For each �, the norm, 	x∗

�	, the objective function values, f �x∗
��

and f��x
∗
��, are shown in Figure 1 and in Table 1. Enlarged graphs of 	x∗

�	 and
f �x∗

�� are shown in Figure 2 for small �’s. As seen in Table 1 and in Figure 2, the
finite termination is reached at some � of the order 10−8. For smaller �’s, the values
	x∗

�	 and f �x∗
�� remain constant while f��x

∗
�� continues decreasing.

7. Concluding Remarks

We have proposed in this paper an �-approximation approach to the numerical
solution of non-strictly convex quadratic semi-infinite programming including the
linear case. This approach converts the problem into a sequence of strictly convex
quadratic semi-infinite programming problems, each of which is solved by the dual
parametrization technique developed in Liu et al. (2001b). As was observed in the
numerical experiment, we can expect to obtain an exact solution to the original
problem at a finite � in some cases.
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